Monday, April 19, 2010

Observation

A swirling green glow in the night sky above snow-covered ground

Aurorae are mostly caused by energetic electrons precipitating into the atmosphere.[143]

Remote observation of electrons requires detection of their radiated energy. For example, in high-energy environments such as the corona of a star, free electrons form a plasma that radiates energy due to Bremsstrahlung. Electron gas can undergo plasma oscillation, which is waves caused by synchronized variations in electron density, and these produce energy emissions that can be detected by using radio telescopes.[144]

The frequency of a photon is proportional to its energy. As a bound electron transitions between different energy levels of an atom, it will absorb or emit photons at characteristic frequencies. For instance, when atoms are irradiated by a source with a broad spectrum, distinct absorption lines will appear in the spectrum of transmitted radiation. Each element or molecule displays a characteristic set of spectral lines, such as the hydrogen spectral series. Spectroscopic measurements of the strength and width of these lines allow the composition and physical properties of a substance to be determined.[145][146]

In laboratory conditions, the interactions of individual electrons can be observed by means of particle detectors, which allow measurement of specific properties such as energy, spin and charge.[104] The development of the Paul trap and Penning trap allows charged particles to be contained within a small region for long durations. This enables precise measurements of the particle properties. For example, in one instance a Penning trap was used to contain a single electron for a period of 10 months.[147] The magnetic moment of the electron was measured to a precision of eleven digits, which, in 1980, was a greater accuracy than for any other physical constant.[148]

The first video images of an electron's energy distribution were captured by a team at Lund University in Sweden, February 2008. The scientists used extremely short flashes of light, called attosecond pulses, which allowed an electron's motion to be observed for the first time.[149][150]

The distribution of the electrons in solid materials can be visualized by angle resolved photoemission spectroscopy (ARPES). This technique employs the photoelectric effect to measure the reciprocal space—a mathematical representation of periodic structures that is used to infer the original structure. ARPES can be used to determine the direction, speed and scattering of electrons within the material.[151]

Plasma applications

Particle beams

A violet beam from above produces a blue glow about a Space shuttle model

During a NASA wind tunnel test, a model of the Space Shuttle is targeted by a beam of electrons, simulating the effect of ionizing gases during re-entry.[152]

Electron beams are used in welding,[153] which allows energy densities up to 107 W·cm−2 across a narrow focus diameter of 0.1–1.3 mm and usually does not require a filler material. This welding technique must be performed in a vacuum, so that the electron beam does not interact with the gas prior to reaching the target, and it can be used to join conductive materials that would otherwise be considered unsuitable for welding.[154][155]

Electron beam lithography (EBL) is a method of etching semiconductors at resolutions smaller than a micron.[156] This technique is limited by high costs, slow performance, the need to operate the beam in the vacuum and the tendency of the electrons to scatter in solids. The last problem limits the resolution to about 10 nm. For this reason, EBL is primarily used for the production of small numbers of specialized integrated circuits.[157]

Electron beam processing is used to irradiate materials in order to change their physical properties or sterilize medical and food products.[158] In radiation therapy, electron beams are generated by linear accelerators for treatment of superficial tumors. Because an electron beam only penetrates to a limited depth before being absorbed, typically up to 5 cm for electron energies in the range 5–20 MeV, electron therapy is useful for treating skin lesions such as basal cell carcinomas. An electron beam can be used to supplement the treatment of areas that have been irradiated by X-rays.[159][160]

Particle accelerators use electric fields to propel electrons and their antiparticles to high energies. As these particles pass through magnetic fields, they emit synchrotron radiation. The intensity of this radiation is spin dependent, which causes polarization of the electron beam—a process known as the Sokolov–Ternov effect.[note 9] The polarized electron beams can be useful for various experiments. Synchrotron radiation can also be used for cooling the electron beams, which reduces the momentum spread of the particles. Once the particles have accelerated to the required energies, separate electron and positron beams are brought into collision. The resulting energy emissions are observed with particle detectors and are studied in particle physics.[161]

Imaging

Low-energy electron diffraction (LEED) is a method of bombarding a crystalline material with a collimated beam of electrons, then observing the resulting diffraction patterns to determine the structure of the material. The required energy of the electrons is typically in the range 20–200 eV.[162] The reflection high energy electron diffraction (RHEED) technique uses the reflection of a beam of electrons fired at various low angles to characterize the surface of crystalline materials. The beam energy is typically in the range 8–20 keV and the angle of incidence is 1–4°.[163][164]

The electron microscope directs a focused beam of electrons at a specimen. As the beam interacts with the material, some electrons change their properties, such as movement direction, angle, relative phase and energy. By recording these changes in the electron beam, microscopists can produce atomically resolved image of the material.[165] In blue light, conventional optical microscopes have a diffraction-limited resolution of about 200 nm.[166] By comparison, electron microscopes are limited by the de Broglie wavelength of the electron. This wavelength, for example, is equal to 0.0037 nm for electrons accelerated across a 100,000-volt potential.[167] The Transmission Electron Aberration-corrected Microscope is capable of sub-0.05 nm resolution, which is more than enough to resolve individual atoms.[168] This capability makes the electron microscope a useful laboratory instrument for high resolution imaging. However, electron microscopes are expensive instruments that are costly to maintain.

There are two main types of electron microscopes: transmission and scanning. Transmission electron microscopes function in a manner similar to overhead projector, with a beam of electrons passing through a slice of material then being projected by lenses on a photographic slide or a charge-coupled device. In scanning electron microscopes, the image is produced by rastering a finely focused electron beam, as in a TV set, across the studied sample. The magnifications range from 100× to 1,000,000× or higher for both microscope types. The scanning tunneling microscope uses quantum tunneling of electrons from a sharp metal tip into the studied material and can produce atomically resolved images of its surface.[169][170][171]

Other

In the free electron laser (FEL), a relativistic electron beam is passed through a pair of undulators containing arrays of dipole magnets, whose fields are oriented in alternating directions. The electrons emit synchrotron radiation, which, in turn, coherently interacts with the same electrons. This leads to the strong amplification of the radiation field at the resonance frequency. FEL can emit a coherent high-brilliance electromagnetic radiation with a wide range of frequencies, from microwaves to soft X-rays. These devices can be used in the future for manufacturing, communication and various medical applications, such as soft tissue surgery.[172]

Electrons are at the heart of cathode ray tubes, which are used extensively as display devices in laboratory instruments, computer monitors and television sets.[173] In a photomultiplier tube, every photon striking the photocathode initiates an avalanche of electrons that produces a detectable current pulse.[174] Vacuum tubes use the flow of electrons to manipulate electrical signals, and they played a critical role in the development of electronics technology. However, they have been largely supplanted by solid-state devices such as the transistor.

No comments:

Post a Comment